Abstract

BackgroundProtein quantification is an essential step in many proteomics experiments. A number of labeling approaches have been proposed and adopted in mass spectrometry (MS) based relative quantification. The mTRAQ, one of the stable isotope labeling methods, is amine-specific and available in triplex format, so that the sample throughput could be doubled when compared with duplex reagents.Methods and resultsHere we propose a novel data analysis algorithm for peptide quantification in triplex mTRAQ experiments. It improved the accuracy of quantification in two features. First, it identified and separated triplex isotopic clusters of a peptide in each full MS scan. We designed a schematic model of triplex overlapping isotopic clusters, and separated triplex isotopic clusters by solving cubic equations, which are deduced from the schematic model. Second, it automatically determined the elution areas of peptides. Some peptides have similar atomic masses and elution times, so their elution areas can have overlaps. Our algorithm successfully identified the overlaps and found accurate elution areas. We validated our algorithm using standard protein mixture experiments.ConclusionsWe showed that our algorithm was able to accurately quantify peptides in triplex mTRAQ experiments. Its software implementation is compatible with Trans-Proteomic Pipeline (TPP), and thus enables high-throughput analysis of proteomics data.

Highlights

  • Protein quantification is an essential step in many proteomics experiments

  • We showed that our algorithm was able to accurately quantify peptides in triplex mTRAQ experiments

  • Its software implementation is compatible with Trans-Proteomic Pipeline (TPP), and enables highthroughput analysis of proteomics data

Read more

Summary

Introduction

A number of labeling approaches have been proposed and adopted in mass spectrometry (MS) based relative quantification. The mTRAQ, one of the stable isotope labeling methods, is amine-specific and available in triplex format, so that the sample throughput could be doubled when compared with duplex reagents. To determine the expressional differences of proteins across samples representing different physiological or disease states, various experimental approaches have been developed: spectral counting, stable isotope labeling, and label-free quantification [3]. Stable isotope labeling is one of popular methods for protein quantification. We focus on the isotope label mTRAQ, which is a nonisobaric variant of the iTRAQ and was originally designed for multiple reaction monitoring (MRM) [20]. The mTRAQ has become available in triplex format, where the label with 149 Da is added

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.