Abstract

A high throughput parallel decoding method is developed for context-based adaptive variable length codes. In this paper, several new design ideas are devised and implemented for scalable parallel processing, a reduction in area, and a reduction in power requirements. First, simplified logical operations instead of memory lookups are used for parallel processing. Second, the codes are grouped based on their lengths for efficient logical operation. Third, up to M bits of the input stream can be analyzed simultaneously. For comparison, we designed a logical-operation-based parallel decoder for M=8 and a conventional parallel decoder. High-speed parallel decoding becomes possible with our method. In addition, for similar decoding rates (1.57 codes/cycle for M=8), our new approach uses 46% less chip area than the conventional method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.