Abstract

Understanding asphaltene nanoaggregation kinetics is a key to predicting the deposition in pure quartz‐grain porous media. High‐throughput quartz packed‐bed microreactors (μPBRs) were, therefore, designed to provide mechanistic insights by merging oilfield chemistry and microchemical systems. In‐line UV‐Vis spectroscopy and pressure transducer were used to characterize the stable packing of quartz particles with porosity of ∼40% and permeability of ∼5.5 × 10−13 m2. Temperature (25.0–90.0°C), n‐heptane composition (50.0–80.0 vol %), and n‐alkane (n‐C5 to n‐C9) were all observed to influence asphaltenes deposition in the porous media, and reduced dispersion was obtained in the damaged packed‐bed by estimating dispersion coefficients and the Bodenstein number. Deposition by mechanical entrapment dominated the mechanism in all scenarios, as discovered by the simplified Kozeny–Carman and Civan's permeability‐porosity relationships. The results could aid in the design of remediations that minimize production losses of considerable economic magnitude. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3534–3546, 2014

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.