Abstract

AbstractThe development of an effective one‐photon excitation pathway to improve the charge‐carrier separation and mobility of semiconductors, which have been proven to be favorable for heterogeneous catalysis, is highly desirable but remains a great challenge. Herein, a high‐throughput one‐photon excitation pathway is reported by constructing 0D carbon dots/3D porous carbon nitride nanovesicles (denoted as CDs/PCN NVs) heterostructures for photocatalytic hydrogen evolution. In particular, the optimum CDs/PCN NVs heterostructures exhibit an impressive performance of 14.022 mmol h−1 g−1, which is 56.54 times higher than that of pristine CN. Detailed characterization reveals that the improved performance is primarily attributed to the high‐throughput and one‐photon excitation pathway. The former could be attributed to a great deal of CDs with high charge‐carrier mobility coupled to PCN NVs, which enable more electrons to be photoexcited via the broad absorption response, and the multiple reflection of incident light owing to the porous nanovesicle structure with shortened route of carriers migrating toward the surface; the latter would lead to the photoinduced holes and electrons accumulated at the valence band of PCN NVs and surface of CDs, respectively, achieving an effective spatial separation. The high‐throughput one‐photon excitation pathway demonstrated here may provide insights into the development of nanocomposites for various related applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.