Abstract

The ability of next-generation sequencing (NGS) assays to interrogate thousands of genomic loci has revolutionized genetic testing. However, translation to the clinic is impeded by false-negative results that pose a risk to patients. In response, regulatory bodies are calling for reliability measures to be reported alongside NGS results. Existing methods to estimate reliability do not account for sample- and position-specific variability, which can be significant. Here, we report an approach that computes reliability metrics for every genomic position and sample interrogated by an NGS assay. Our approach predicts the limit of detection (LOD), the lowest reliably detectable variant fraction, by taking technical factors into account. We initially explored how LOD is affected by input material amount, library conversion rate, sequencing coverage, and sequencing error rate. This revealed that LOD depends heavily on genomic context and sample properties. Using these insights, we developed a computational approach to predict LOD on the basis of a biophysical model of the NGS workflow. We focused on targeted assays for cell-free DNA, but, in principle, this approach applies to any NGS assay. We validated our approach by showing that it accurately predicts LOD and distinguishes reliable from unreliable results when screening 580 lung cancer samples for actionable mutations. Compared with a standard variant calling workflow, our approach avoided most false negatives and improved interassay concordance from 94% to 99%. Our approach, which we name LAVA (LOD-aware variant analysis), reports the LOD for every position and sample interrogated by an NGS assay. This enables reliable results to be identified and improves the transparency and safety of genetic tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.