Abstract
Fluorescence lifetime microscopy has been widely used in quantifying cellular interaction or histopathological identification of different stained tissues. A novel, to the best of our knowledge, approach for high-throughput multiplexed fluorescence lifetime imaging is presented. To establish a high-throughput fluorescence lifetime acquisition system, a uniformed illumination optical focus array was generated by a novel computer-generated hologram algorithm based on matrix triple product. This, in conjunction with an array detector and multichannel time-correlated single-photon counting, enables the full use of the acquisition ability of each detector. By utilizing interval segmentation of photon time detection, a high-throughput multiplexed fluorescence lifetime imaging is achieved. Experimental results demonstrate that this method achieves a fivefold increase in the collection throughput of fluorescence lifetime and is capable of simultaneous dual-target fluorescence lifetime measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.