Abstract

An automated high throughput multidimensional reaction screening platform based on an inline Fourier-transform infrared spectroscopy (FT-IR) is presented. By combining flow chemistry, machine automation and inline analysis, the platform is able to screen reactions in multidimensions (residence time, monomer concentration, degree of polymerization, reaction temperature and monomer conversion) rapidly and efficiently way. Kinetic data libraries associated with high data precision (absolute error < 4 %), high reproducibility and high data density are built with ease from the platform. To test the method, we screened the RAFT polymerization of methyl acrylate in unmatched detail, and the ring opening metathesis polymerization of methyl-5-norbornene-2-carboxylate. The method we introduce is a key step in providing 'big data' for data driven research in the future, and already at present allows for precise prediction of reaction outcomes within the high-dimensional chemical parameter space that is screened.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.