Abstract

In this study, we developed a microfluidic in vitro wound healing model to overcome the existing limitations of traditional experimental methods in quantifying cell migration. We manufactured a microfluidic system equipped with a gradient concentration generator to control the reagent density and with microvalves so the wound masking pattern could be automatically controlled by a programmable Arduino board. A wound healing experiment of human corneal epithelial cells (HCE-T cells) using eight different concentrations of ursolic acid with eight replicates was conducted simultaneously using our microfluidic system. A microfluidic in vitro wound healing model using HCE-T cells involving a programmable Arduino board for automatic process control was established to provide a well-controlled concentration gradient to determine the optimal concentration of ursolic acid in the wound healing process. The migration of cells according to different concentrations of ursolic acid was achieved easily, quickly, and reliably, and the effect of ursolic acid in promoting cell migration was confirmed. We demonstrated that our system effectively provides an appropriate environment for in vitro wound healing studies and is expected to be an advanced tool and an economically efficient, robust, and reliable platform to study and evaluate new wound healing drugs in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.