Abstract

Precise early diagnosis and staging are conducive to improving the prognosis of colorectal cancer (CRC) and gastric cancer (GC) patients. However, due to intrusive inspections and limited sensitivity, the prevailing diagnostic methods impede precisely large-scale screening. In this work, we reported a high-throughput serum metabolic patterns (SMP) screening strategy based on covalent organic frameworks-assisted laser desorption/ionization mass spectrometry (hf-COFsLDI-MS) for early diagnosis and staging of CRC and GC. Notably, 473 high-quality SMP were extracted without any tedious sample pretreatment and coupled with multiple machine learning algorithms; the area under the curve (AUC) value is 0.938 with 96.9% sensitivity for early CRC diagnosis, and the AUC value is 0.974 with 100% sensitivity for early GC diagnosis. Besides, the discrimination of CRC and GC is accomplished with an AUC value of 0.966 for the validation set. Also, the screened-out features were identified by MS/MS experiments, and 8 metabolites were identified as the biomarkers for CRC and GC. Finally, the corresponding disordered metabolic pathways were revealed, and the staging of CRC and GC was completed. This work provides an alternative high-throughput screening strategy for CRC and GC and highlights the potential of metabolic molecular diagnosis in clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call