Abstract
Comprehensive reference data for steroid hormones are lacking in rat models, particularly for early developmental stages and unconventional matrices as the liver. Therefore, we developed and validated an enzymatic, solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify a panel of 23 steroid hormones in liver and plasma from adult and neonatal rats. Our approach tackles methodological challenges, focusing on undesired byproducts associated with specific enzymatic treatment, and enables a thorough assessment of potential interferences in complex matrices by utilizing unstripped plasma and liver. We propose an optimized enzymatic hydrolysis protocol using a recombinant β-glucuronidase/sulfatase mix (BGS mix) to efficiently deconjugate steroid phase II conjugates. The streamlined sample preparation and high-throughput solid phase extraction in a 96-well plate significantly accelerate sample processing for complex matrices and alarge number of samples. We were able to achieve the necessary sensitivity for accurately measuring the target analytes, particularly estrogens, in small sample sizes of 5–20 mg of liver tissue and 100 μL of plasma. Through the analysis of liver and plasma samples from adult and neonatal rats, including both sexes, our study showed a novel set of steroid hormone reference intervals. This study provides a reliable diagnostic tool for the quantification of steroids in rat models and gives insight in liver and plasma-related steroid hormone dynamics at early developmental stages. In addition, the method covers several pathway intermediates and extend the list of steroid hormones to be investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.