Abstract

Magnetic nanoparticles have been extensively explored as theranostic agents both in academic and clinical settings. Their self-assembly into nanohybrids using block copolymers can lead to new nanostructures with high functionalities and performances. Herein, we demonstrate a high-throughput and scalable method to elaborate magnetic micelles by the assembly of iron oxide magnetite nanoflowers, an efficient nanoheater, and the block copolymer Poly(styrene)-block-poly(acrylic acid) via a microfluidic-assisted nanoprecipitation method. We show that the size and shape of the magnetomicelles can be easily tuned by modulating the residence time in the microfluidic channel. In addition to their biocompatibility, we demonstrate the potential of these magnetic nanohybrids as multimodal theranostic platforms capable of generating heat by photothermia and functioning as negative contrast agents in magnetic resonance imaging and as imaging tracers in magnetic particle imaging. Notably, they outperform currently commercially available particles in terms of imaging functionalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.