Abstract

Herein, this work is dedicated to a both exotic and promising printing technique in silicon (Si) photovoltaics (PV). Indirect gravure printing is investigated as a metallization technique focusing on low‐temperature applications, such as Si heterojunction (SHJ) and perovskite Si tandem solar cells. One advantage of this rotary printing technique is that its components are very durable. From graphical industry, it is known that gravure cylinders show almost no wearing during multiple printing. Additionally, rotary printing techniques offer great throughput. Therefore, indirect gravure printing can reduce costs significantly in PV production. In this work, short process cycle times of 0.9 s cell−1 for industrial wafers (edge length of 156.75 mm) are demonstrated. Using an appropriate production platform even enables cycle times of down to 0.5 s cell−1. Busbarless SHJ half cells with non‐optimized gravure‐printed front grids reach a mean photoconversion efficiency that is (1.7 ± 0.5) %abs lower compared to screen‐printed reference samples, however, cycle time is reduced. The metal contacts exhibit a mean shading width of (65 ± 16) μm and an average height of (5 ± 1) μm. Applied to SHJ solar cells’ rear, such metallization can replace screen‐printed contacts with 0.1%abs efficiency loss only, as device simulations reveal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.