Abstract

Laser metal additive manufacturing has become an increasingly popular technology due to its flexibility in geometry and materials. As one of the commercialized additive processes, powder-blown directed energy deposition (DED) has been used in multiple industries, such as aerospace, automotive, and medical device. However, a lack of fundamental understanding remains for this process, and many opportunities for alloy development and implementation can be identified. A high-throughput, in situ DED system capable of multi-layer builds that can address these issues is presented here. Implications of layer heights and energy density are investigated through an extensive process parameter sweep, showcasing the power of a high-throughput setup while also discussing multi-layer interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.