Abstract

Objectives To develop and validate a novel genotyping approach, named infrared Fluorescence Allele Specific Hybridization (iFLASH), which combines the principles of allele specific oligonucleotide (ASO) hybridization with the advanced possibilities of infrared imaging. Design and methods As an example, we genotyped the 55L > M and the 192Q > R common genetic variants of the paraoxonase-1 gene in 92 DNA samples using the iFLASH technique, and validated the outcomes with the restriction fragment length polymorphism (RFLP) and TAQman genotyping assays. Results There was a 100 percent agreement in genotype outcome among the three methods. Conclusions Although we found complete unity in genotype outcome, the iFLASH assay has essential advantages over the RFLP and TAQman genotyping assays. First, the iFLASH technique is capable of handling up to 1536 samples per assay, which makes it a suitable technique for high-throughput genotyping. Secondly, because the costs per assay are lower, high-throughput genotyping with iFLASH is affordable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.