Abstract

RNA interference (RNAi) is a set of mechanisms which regulate gene expression in eukaryotes. Key elements of RNAi are small sense and antisense RNAs from 19 to 26 nt generated from double-stranded RNAs. MicroRNAs (miRNAs) are a major type of RNAi-associated small RNAs and are found in most eukaryotes studied to date. To investigate whether small RNAs associated with RNAi appear to be present in all eukaryotic lineages, and therefore present in the ancestral eukaryote, we studied two deep-branching protozoan parasites, Giardia intestinalis and Trichomonas vaginalis. Little is known about endogenous small RNAs involved in RNAi of these organisms. Using Illumina Solexa sequencing and genome-wide analysis of small RNAs from these distantly related deep-branching eukaryotes, we identified 10 strong miRNA candidates from Giardia and 11 from Trichomonas. We also found evidence of Giardia short-interfering RNAs potentially involved in the expression of variant-specific surface proteins. In addition, eight new small nucleolar RNAs from Trichomonas are identified. Our results indicate that miRNAs are likely to be general in ancestral eukaryotes and therefore are likely to be a universal feature of eukaryotes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.