Abstract
The lack of an efficient method for the identification of tumor antigen-specific T cell receptors (TCRs) impedes the development of T cell-based cancer immunotherapies. Here, we introduce a droplet-based microfluidic platform for function-based screening and sorting of tumor antigen-specific T cells with high throughput. We built a reporter cell line by co-transducing the TCR library and reporter genes at the downstream of TCR signaling, and reporter cells fluoresced upon functionally binding with antigens. We co-encapsulated reporter cells and antigen-presenting cells in droplets to allow for stimulation on a single-cell level. Functioning reporter cells specific against the antigen were identified in the microfluidic channel based on the fluorescent signals of the droplets, which were immediately sorted out using dielectrophoresis. We validated the reporter system and sorting results using flow cytometry. We then performed single-cell RNA sequencing on the sorted cells to further validate this platform and demonstrate the compatibility with genetic characterizations. Our platform provides a means for precise and efficient T cell immunotherapy, and the droplet-based high-throughput TCR screening method could potentially facilitate immunotherapeutic screening and promote T cell-based anti-tumor therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.