Abstract

We use a combination of symmetry analysis and high-throughput density functional theory calculations to search for new ferroelectric materials. We use two search strategies to identify candidate materials. In the first strategy, we start with non-polar materials and look for unrecognized energy-lowering polar distortions. In the second strategy, we consider polar materials and look for related higher symmetry structures. In both cases, if we find new structures with the correct symmetries that are also close in energy to experimentally known structures, then the material is likely to be switchable in an external electric field, making it a candidate ferroelectric. We find sixteen candidate materials, with variety of properties that are rare in typical ferroelectrics, including large polarization, hyperferroelectricity, antiferroelectricity, and multiferroism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call