Abstract
Microcapsules with a liquid core and a solid shell composed of hydrophobic nanoparticles are broadly applied in food, pharmaceutics, and biotechnologies. For example, Pickering emulsions, colloidosomes, or antibubbles (droplets surrounded by air layers in water) enable controlled release of active agents, biocompatibility, and contact-less liquid transportation. However, producing controlled nanoparticle- or polymer-laden hydrophobic shells at scale is highly challenging, since bulk methods are polydisperse and microfluidic chips are prone to clogging and slow. Here, clog-free coating of an aqueous jet with silica nanoparticle suspensions with concentrations up to 10% (w/v), as well as high concentrations of polymers (30% (w/v) poly(lactic acid) (PLA)), is demonstrated, enabling continuous generation of microcapsules at flow rates up to 4mLmin-1 . Pickering emulsions are converted into capsules, providing hydrophobic shells consisting of nanoparticles for controlled release. As a highlight, the scalable fabrication ofair-coated capsules (antibubbles) in the sub-millimeter range is demonstrated. The shell contains an air film that protects the liquid core for days yet enables ultrasound-induced release within 3 min. By enabling rapid fabrication of controlled Pickering emulsions, colloidosomes, antibubbles, and biodegradable capsules, jetting through a liquid layer (JetALL) provides a versatile platform for advanced applications in food, pharmacy, and life science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.