Abstract

AbstractConsolidating published research on aluminum alloys into insights about microstructure–property relationships can simplify and reduce the costs involved in alloy design. One critical design consideration for many heat-treatable alloys deriving superior properties from precipitation are phases as key microstructure constituents because they can have a decisive impact on the engineering properties of alloys. Here, we present a computational framework for high-throughput extraction of phases and their impact on properties from scientific papers. Our framework includes transformer-based and large language models to identify sentences with phase-property information in papers, recognize phase and property entities, and extract phase-property relationships and their “sentiment.” We demonstrate the application of our framework on aluminum alloys, for which we build a database of 7,675 phase–property relationships extracted from a corpus of almost 5000 full-text papers. We comment on the extracted relationships based on common metallurgical knowledge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call