Abstract

The online characterization and detection of individual droplets at high speeds, low analyte concentrations, and perfect detection efficiencies is a significant challenge underpinning the application of microfluidic droplet reactors to high-throughput chemistry and biology. Herein, we describe the integration of confocal fluorescence spectroscopy as a high-efficiency detection method for droplet-based microfluidics. Issues such as surface contamination, rapid mixing, and rapid detection, as well as low detections limits have been addressed with the approach described when compared to conventional laminar flow-based fluidics. Using such a system, droplet size, droplet shape, droplet formation frequencies, and droplet compositions can be measured accurately and precisely at kilohertz frequencies. Taking advantage of this approach, we demonstrate a high-throughput biological assay based on fluorescence resonance energy transfer (FRET). By attaching a FRET donor (Alexa Fluor 488) to streptavidin and labeling a FRET acceptor (Alexa Fluor 647) on one DNA strand and biotin on the complementary strand, donor and acceptor molecules are brought in proximity due to streptavidin-biotin binding, resulting in FRET. Fluorescence bursts of the donor and acceptor from each droplet can be monitored simultaneously using separate avalanche photodiode detectors operating in single photon counting mode. Binding assays were investigated and compared between fixed streptavidin and DNA concentrations. Binding curves fit perfectly to Hill-Waud models, and the binding ratio between streptavidin and biotin was evaluated and found to be in agreement with the biotin binding sites on streptavidin. FRET efficiency for this FRET pair was also investigated from the binding results. Efficiency results show that this detection system can precisely measure FRET even at low FRET efficiencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.