Abstract

Fluorescent sensors are powerful tools for visualizing cellular molecular dynamics. We present a high-throughput screening system, designated hybrid-type fluorescence indicator development (HyFInD), to identify optimal position-specific fluorophore labeling in hybrid-type sensors consisting of combinations of ligand-binding protein mutants with small molecular fluorophores. We screened sensors for glutamate among hybrid molecules obtained by the reaction of four cysteine-reactive fluorescence probes with a set of cysteine-scanning mutants of the 274 amino acid S1S2 domain of AMPA-type glutamate receptor GluA2 subunit. HyFInD identified a glutamate-responsive probe (enhanced glutamate optical sensor: eEOS) with a dynamic range >2400 %, good photostability, and high selectivity. When eEOS was specifically tethered to neuronal surfaces, it reliably visualized the spatiotemporal dynamics of glutamate release at single synapses, revealing synapse-to-synapse heterogeneity of short-term plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.