Abstract

High-throughput detection of large-scale samples is the foundation for rapidly accessing massive metabolic data in precision medicine. Machine learning is a powerful tool for uncovering valuable information hidden within massive data. In this work, we achieved the extraction of a single fingerprinting of 1 μL serum within 5 s through a high-throughput detection platform based on functionalized nanoparticles. We quickly obtained over a thousand serum metabolic fingerprintings (SMFs) including those of individuals with Helicobacter pylori (HP) infection. Combining four classical machine learning models and enrichment analysis, we attempted to extract and confirm useful information behind these SMFs. Based on all fingerprint signals, all four models achieved area under the curve (AUC) values of 0.983–1. In particular, orthogonal partial least squares discriminant analysis (OPLS-DA) model obtained value of 1 in both the discovery and validation sets. Fortunately, we identified six significant metabolic features, all of which can greatly contribute to the monitoring of HP infection, with AUC values ranging from 0.906 to 0.985. The combination of these six significant metabolic features can enable the precise monitoring of HP infection in serum, with over 95 % of accuracy, specificity and sensitivity. The OPLS-DA model displayed optimal performance and the corresponding scatter plot visualized the clear distinction between HP and HC. Interestingly, they exhibit a consistent reduction trend compared to healthy controls, prompting us to explore the possible metabolic pathways and potential mechanism. This work demonstrates the potential alliance between high-throughput detection and machine learning, advancing their application in precision medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.