Abstract
Two-dimensional (2D) materials have attracted great attention mainly due to their unique physical properties and ability to fulfill the demands of future nanoscale devices. By performing high-throughput first-principles calculations combined with a semiempirical van der Waals dispersion correction, we have screened 73 direct- and 183 indirect-gap 2D nonmagnetic semiconductors from nearly 1000 monolayers according to the criteria for thermodynamic, mechanical, dynamic, and thermal stabilities and conductivity type. We present the calculated lattice constants, formation energy, Young's modulus, Poisson's ratio, shear modulus, anisotropic effective mass, band structure, band gap, ionization energy, electron affinity, and simulated scanning tunnel microscopy for each candidate meeting our criteria. The resulting 2D semiconductor database (2DSdb) can be accessed via the Web site https://materialsdb.cn/2dsdb/index.html. The 2DSdb provides an ideal platform for computational modeling and design of new 2D semiconductors and heterostructures in photocatalysis, nanoscale devices, and other applications. Further, a linear fitting model was proposed to evaluate band gap, ionization energy, and electron affinity of 2D semiconductors from the density functional theory (DFT) calculated data as initial input. This model can be as precise as hybrid DFT but with much lower computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.