Abstract
Multivariate metal-organic frameworks (MTV-MOFs) contain multiple linker types within a single structure. Arrangements of linkers containing different functional groups confer structural diversity and surface heterogeneity and result in a combinatorial explosion in the number of possible structures. In this work, we carried out high-throughput computational screening of a large number of computer-generated MTV-MOFs to assess their CO2 capture properties using grand canonical Monte Carlo simulations. The results demonstrate that functionalization enhances CO2 capture performance of MTV-MOFs when compared to their parent (unfunctionalized) counterparts, and the pore size plays a dominant role in determining the CO2 adsorption capabilities of MTV-MOFs irrespective of the combinations of the three functional groups (-F, -NH2, and -OCH3) that we investigated. We also found that the functionalization of parent MOFs with small pores led to larger enhancements in CO2 uptake and CO2/N2 selectivity than functionalization in larger-pore MOFs. Free energy contour maps are presented to visually compare the influence of linker functionalization between frameworks with large and small pores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.