Abstract

A Lia(NixMnyCoz)Or cathode materials library was fabricated by combinatorial magnetron sputtering. The compositional analysis of the library was performed by a new high-throughput approach for Li-content measurement in thin films, which combines automated energy-dispersive X-ray spectroscopy, Deuteron-induced gamma emission, and Rutherford backscattering measurements. Furthermore, combining this approach with thickness measurements allows the mapping of density values of samples from the materials library. By correlating the obtained compositional data with structural data from high-throughput X-ray diffraction measurements, those compositions which show a layered (R3̅m) structure and are therefore most interesting for Li-battery applications (for cathode (positive) electrodes) can be rapidly identified. This structure was identified as being most pronounced in the compositions Li0.6(Ni0.16Mn0.35Co0.48)O2, Li0.7(Ni0.10Mn0.37Co0.51)O2, Li0.6(Ni0.23Mn0.33Co0.43)O2, Li0.3(Ni0.65Mn0.08Co0.26)O2, Li0.3(Ni0.63Mn0.08Co0.29)O2, Li0.4(Ni0.56Mn0.09Co0.34)O2, Li0.5(Ni0.45Mn0.13Co0.42)O2, and Li0.6(Ni0.34Mn0.14Co0.52)O2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.