Abstract

With the annual global electricity production exceeding 30,000 TWh, the safe transmission of electric power has been heavily relying on SF6, the most potent industrial greenhouse gas. While promising SF6 alternatives have been proposed, their compatibilities with materials used in gas-insulated equipment (GIE) must be thoroughly studied. This is particularly true as the emerging SF6 alternatives generally leverage their relatively higher reactivity to achieve lower global warming potentials (GWPs). Here, a high-throughput compatibility screening of common GIE materials was conducted with a representative SF6 alternative, namely, C4F7N (2,3,3,3-tetrafluoro-2-(trifluoromethyl)propanenitrile)/CO2 gas mixtures. In this screening, the insulation performance of C4F7N/CO2 gas mixtures, as an indicator of the C4F7N/materials compatibility level, was periodically monitored during the thermal aging with tens of materials from SF6-insulated GIE, including desiccants/adsorbents, rubber, plastics, composites, ceramics, metals, etc. The identification of incompatible materials and the follow-up mechanism studies suggested that the acidity of materials represents the primary cause for C4F7N/materials incompatibility when C4F7N/CO2 gas mixtures are used as a drop-in replacement solution for existing SF6-insulated apparatuses. Mitigation strategies tackling the acidity of materials were then proposed and validated. Additionally, the amphoteric characteristics of C4F7N were briefly discussed. This work provides insight into the materials incompatibility of SF6 alternatives, along with validated mitigation strategies, for the selection and design of materials used in future eco-friendly GIE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.