Abstract
IoT Edge intelligence requires Convolutional Neural Network (CNN) inference to take place in the edge devices itself. ARM big.LITTLE architecture is at the heart of prevalent commercial edge devices. It comprises of single-ISA heterogeneous cores grouped into multiple homogeneous clusters that enable power and performance trade-offs. All cores are expected to be simultaneously employed in inference to attain maximal throughput. However, high communication overhead involved in parallelization of computations from convolution kernels across clusters is detrimental to throughput. We present an alternative framework called Pipe-it that employs pipelined design to split convolutional layers across clusters while limiting parallelization of their respective kernels to the assigned cluster. We develop a performance-prediction model that utilizes only the convolutional layer descriptors to predict the execution time of each layer individually on all permitted core configurations (type and count). Pipe-it then exploits the predictions to create a balanced pipeline using an efficient design space exploration algorithm. Pipe-it on average results in a 39% higher throughput than the highest antecedent throughput.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.