Abstract

Proper control of microRNA (miRNA) expression is critical for normal development and physiology, while abnormal miRNA expression is a common feature of many diseases. Dissecting mechanisms of miRNA regulation, however, is complicated by the generally poor annotation of miRNA primary transcripts (pri-miRNAs). Although some miRNAs are processed from well-defined protein coding genes, the majority of pri-miRNAs are poorly characterized noncoding RNAs, with incomplete annotation of promoters, splice sites, and polyadenylation signals. Due to the efficiency of DROSHA processing, the abundance of pri-miRNAs is very low at steady state, thereby complicating the elucidation of pri-miRNA structures. Here we describe a strategy to enrich intact pri-miRNAs and improve their coverage in RNA sequencing (RNA-seq) experiments. In addition, we outline a computational approach for reconstruction of pri-miRNA structures. This pipeline begins with raw RNA-seq reads and concludes with publication-ready visualization of pri-miRNA annotations. Together, these approaches allow the user to define and explore miRNA gene structures in a cell-type or organism of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.