Abstract

This paper presents a high-throughput method for Above Ground Estimation of Biomass (AGBE) in rice using multispectral near-infrared (NIR) imagery captured at different scales of the crop. By developing an integrated aerial crop monitoring solution using an Unmanned Aerial Vehicle (UAV), our approach calculates 7 vegetation indices that are combined in the form of multivariable regressions depending on the stage of rice growth: vegetative, reproductive or ripening. We model the relationship of these vegetation indices to estimate the biomass of a certain crop area. The methods are calibrated by using a minimum sampling area of 1 linear meter of the crop. Comprehensive experimental tests have been carried out over two different rice varieties under upland and lowland rice production systems. Results show that the proposed approach is able to estimate the biomass of large areas of the crop with an average correlation of 0.76 compared with the traditional manual destructive method. To our knowledge, this is the first work that uses a small sampling area of 1 linear meter to calibrate and validate NIR image-based estimations of biomass in rice crops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.