Abstract

Compounds that impair the synthesis of either mitochondrial DNA (mtNDA) or mtDNA-encoded proteins reduce the levels of 13 proteins essential for oxidative phosphorylation, leading to a decrease in mitochondrial ATP production. Toxicity caused by these compounds is seldom identified in 24 to 72 hr cytotoxicity assays due to the low turnover rates of both mtDNA and mtDNA-encoded proteins. Here, we describe three high-throughput screening assays that detect compounds that affect mtDNA-encoded protein levels. All three assays measure the levels of two proteins, one a mtDNA-encoded protein synthesized on mitochondrial ribosomes and the other, a nuclear DNA-encoded protein synthesized on cytosolic ribosomes. The first assay measures the levels of these two proteins by quantitative image analysis and requires a high-content imaging system. The second assay is an in-cell immunoassay that utilizes infrared dyes for detection of the two proteins and, thus, requires a LI-COR Odyssey system. The third assay is an in-cell immunoassay that utilizes colorimetric detection of the two proteins and requires an absorbance microplate reader.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.