Abstract

Subcutaneous delivery is one of the preferred administration routes for therapeutic monoclonal antibodies (mAbs). High antibody dosing requirements and small injection volumes necessitate formulation and delivery of highly concentrated mAb solutions. Such elevated antibody concentrations can lead to undesirable solution behaviors such as mAb self-association and aggregation, which are relatively straightforward to detect using various biophysical methods because of the high purity and concentration of antibody formulations. However, the biophysical properties of mAbs in serum can also impact antibody activity, but these properties are less well understood because of the difficulty characterizing mAbs in such a complex environment. Here we report a high-throughput assay for directly evaluating mAb self-association and aggregation in serum. Our approach involves immobilizing polyclonal antibodies specific for human mAbs on gold nanoparticles, and then using these conjugates to capture human antibodies at a range of subsaturating to saturating mAb concentrations in serum. Antibody aggregation is detected at subsaturating mAb concentrations via blue-shifted plasmon wavelengths due to the reduced efficiency of capturing mAb aggregates relative to monomers, which reduces affinity cross-capture of mAbs by multiple conjugates. In contrast, antibody self-association is detected at saturating mAb concentrations via red-shifted plasmon wavelengths due to attractive interparticle interactions between immobilized mAbs. The high-throughput nature of this assay along with its compatibility with unusually dilute mAb solutions (0.1-10 μg per mL) should make it useful for identifying antibody candidates with high serum stability during early antibody discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.