Abstract
The aim of this study was to develop a high-throughput robotic microtiter plate-based screening assay for Candida albicans, optimizing growth conditions to replicate the filamentous biofilm growth found in vivo, and subsequently, to demonstrate the assay by evaluating the effect of nutritional drinks alone and in combination with the antifungal amphotericin B (AmB). Candida albicans cultured in a defined growth medium showed filamentous growth in microcolonies, mimicking the morphology of oral mucosal disease (oral candidiasis). Addition of nutrient drinks containing fruit juices, fish oil and whey protein to the medium resulted in changed morphology and promoted growth as free yeast cells and with weak biofilm structures. Minimum inhibitory concentration of AmB on the biofilms was 0.25 μg ml-1 , and this was eightfold reduced (0.0038 μg ml-1 ) in the presence of the nutritional drinks. The established assay demonstrated applicability for screening of antifungal and anti-biofilm effects of bioactive substances on C. albicans biofilm with clinically relevant morphology. Candida albicans is the causative agent of the majority of fungal infections globally. The filamentous morphology of C. albicans and the ability to form biofilm are traits known to increase virulence and resistance towards antifungals. This study describes the development of a plate-based in vitro screening method mimicking the filamentous morphology of C. albicans found in vivo. The assay established can thus facilitate efficient antifungal drug discovery and development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.