Abstract

Hetero-dinuclear synergic catalysis is a promising approach for improving catalytic performance. However, employing it is challenging because the design principles for the metal complex are still not well understood. Further, these complexes have a broader set of possibilities than mononuclear or homometallic systems, increasing the time and effort required to understand them. In this study, we explored a high-throughput approach to obtain a new hetero-dinuclear synergistic metal complex for H2O2 activation. From the 1152 combinations of metal complex candidates obtained by changing three variables (metal ions, unsymmetrical dinucleating ligands, and pH), the lead complex (L3-(Ni, Co)), which has the highest peroxidase activity, was derived using colorimetric parallel analysis. A series of control experiments revealed that L3 plays a crucial role in the formation of active L3-(Ni, Co) complexes, Co2+ acts as a catalytic center, and Ni2+ serves as an assistant catalytic site within L3-(Ni, Co). In addition, the catalytic efficiency of L3-(Ni, Co), which was 125 times that of the homo-bimetallic complex (L3-(Co, Co)), revealed clear hetero-bimetallic synergism in the buffer. The ultraviolet-visible study and electron paramagnetic resonance-based spin-trap experiment provided mechanistic insight into H2O2 activation by the intermediate, which was found to be induced by the reaction of L3-(Ni, Co) and H2O2. Moreover, the intermediate could act as a donor of the hydroperoxyl radical (•OOH) in the buffer. Furthermore, L3-(Ni, Co) demonstrated potential for application as a signal transducer for H2O2 in an enzyme-coupled cascade assay that can be used for the colorimetric detection of glucose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call