Abstract

Mass spectrometry has transformed the field of cell signaling by enabling global studies of dynamic protein phosphorylation ('phosphoproteomics'). Recent developments are enabling increasingly sophisticated phosphoproteomics studies, but practical challenges remain. The EasyPhos workflow addresses these and is sufficiently streamlined to enable the analysis of hundreds of phosphoproteomes at a depth of >10,000 quantified phosphorylation sites. Here we present a detailed and updated workflow that further ensures high performance in sample-limited conditions while also reducing sample preparation time. By eliminating protein precipitation steps and performing the entire protocol, including digestion, in a single 96-well plate, we now greatly minimize opportunities for sample loss and variability. This results in very high reproducibility and a small sample size requirement (≤200 μg of protein starting material). After cell culture or tissue collection, the protocol takes 1 d, whereas mass spectrometry measurements require ~1 h per sample. Applied to glioblastoma cells acutely treated with epidermal growth factor (EGF), EasyPhos quantified 20,132 distinct phosphopeptides from 200 μg of protein in less than 1 d of measurement time, revealing thousands of EGF-regulated phosphorylation events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.