Abstract

Nanoparticle-based mRNA therapeutics hold great promise, but cellular internalization and endosomal escape remain key barriers for cytosolic delivery. We developed a dual nanoparticle uptake and endosomal disruption assay using high-throughput and high-content image-based screening. Using a genetically encoded Galectin 8 fluorescent fusion protein sensor, endosomal disruption could be detected via sensor clustering on damaged endosomal membranes. Simultaneously, nucleic acid endocytosis was quantified using fluorescently tagged mRNA. We used an array of biodegradable poly(beta-amino ester)s as well as Lipofectamine and PEI to demonstrate that this assay has higher predictive capacity for mRNA delivery compared to conventional polymer and nanoparticle physiochemical characteristics. Top nanoparticle formulations enabled safe and efficacious mRNA expression in multiple tissues following intravenous injection, demonstrating that the in vitro screening method is also predictive of in vivo performance. Efficacious nonviral systemic delivery of mRNA with biodegradable particles opens up new avenues for genetic medicine and human health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.