Abstract
Eukaryotic cells are compartmentalized into membrane-bound organelles, allowing each organelle to maintain the specialized conditions needed for their specific functions. One of the features that change between organelles is lumenal pH. In the endocytic and secretory pathways, lumenal pH is controlled by isoforms and concentration of the vacuolar-type H+-ATPase (V-ATPase). In the endolysosomal pathway, copies of complete V-ATPase complexes accumulate as membranes mature from early endosomes to late endosomes and lysosomes. Thus, each compartment becomes more acidic as maturation proceeds. Lysosome acidification is essential for the breakdown of macromolecules delivered from endosomes as well as cargo from different autophagic pathways, and dysregulation of this process is linked to various diseases. Thus, it is important to understand the regulation of the V-ATPase. Here we describe a high-throughput method for screening inhibitors/activators of V-ATPase activity using Acridine Orange (AO) as a fluorescent reporter for acidified yeast vacuolar lysosomes. Through this method, the acidification of purified vacuoles can be measured in real-time in half-volume 96-well plates or a larger 384-well format. This not only reduces the cost of expensive low abundance reagents, but it drastically reduces the time needed to measure individual conditions in large volume cuvettes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.