Abstract
Abstract In recent years, the StreamVane technology has developed into a mature and streamlined process that can reproduce swirl distortion for ground-test evaluation of fan and compressor performance and durability. A StreamVane device consists of complex turning vanes that accurately output a distorted secondary velocity field at a defined distance downstream. To further advance the applications and conditions in which these devices operate, a research effort was developed and completed to investigate methods to increase critical Mach numbers. The effort was split into three separate stages: (1) Perform high fidelity computational fluid dynamics (CFD) to identify peak Mach number locations within twin and quad swirl vane pack designs; (2) conduct thorough literature reviews on relevant high throughflow techniques; and (3) design and implement selected techniques to evaluate improvements using the same high-fidelity CFD methods. It was predicted that employing blade lean within high-speed vane junctions increased critical Mach numbers by 6.6%, while blade sweep resulted in a 3.5% increase. The results and conclusions from this effort are presented throughout this paper with a primary focus on comparing Mach numbers and swirl profiles between vane packs with and without high throughflow designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.