Abstract

Utilizing high thermostable ordered mesoporous SiO2–TiO2 as a precursor, macroporous polyurethane foam (PUF) as a floating biofilm carrier, the photocatalytic circulating-bed biofilm reactor (PCBBR) is fabricated via ultrasonic vibration and deposition approach. The prepared SiO2–TiO2/PUF carrier is characterized in detail by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, N2 adsorption, scanning electron microscopy and energy dispersive spectroscopy. The results indicate that the ordered mesoporous SiO2–TiO2 network can be maintained and the presence of SiO2 can inhibit the anatase-to-rutile phase transformation during 800°C calcinations. Furthermore, the prepared SiO2–TiO2/PUF carrier presents a hierarchical macro/mesoporous structure, filling the bacterium to the channels. The PCBBR exhibits good synergic effect for the refractory phenolic wastewater, and the total organic carbon removal ratio of high toxic 2,4,5-trichlorophenol is up to 97.5% after hydraulic retention time for 3h, which is ascribed to the hierarchical macro/mesoporous structure in favor of pollutants adsorption, efficient photon utilization and microorganism loading. This novel ordered mesoporous SiO2–TiO2 coated circulating-bed biofilm reactor is promising in the environmental field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.