Abstract
Achieving high thermoelectric performance in thin film heterostructures is essential for integrated and miniatured thermoelectric device applications. In this work, we demonstrate a mechanism and device performance of enhanced thermoelectric performance induced by interfacial effect in a transition metal dichalcogenides-SrTiO3 (STO) heterostructure. Owing to the formed conductive interface and elevated conductivity, the ZrTe2/STO heterostructure presents large thermoelectric power factor of 3.7 × 105 μWcm−1K−2 at 10 K. Formation of quasi-two-dimensional conductance at the interface is attributed for the large Seebeck coefficient and high electrical conductivity, leading to high thermoelectric performance which is demonstrated by a prototype device attaining 3 K cooling with 100 mA current input to this heterostructure. This superior thermoelectric property makes this heterostructure a promising candidate for future thermoelectric device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.