Abstract

We report on the high thermoelectric performance of p-type polycrystalline BiCuSeO, a layered oxyselenide composed of alternating conductive (Cu2Se2)2− and insulating (Bi2O2)2+ layers. The electrical transport properties of BiCuSeO materials can be significantly improved by substituting Bi3+ with Ca2+. The resulting materials exhibit a large positive Seebeck coefficient of ∼+330 μV K−1 at 300 K, which may be due to the ‘natural superlattice’ layered structure and the moderate effective mass suggested by both electronic density of states and carrier concentration calculations. After doping with Ca, enhanced electrical conductivity coupled with a moderate Seebeck coefficient leads to a power factor of ∼4.74 μW cm−1 K−2 at 923 K. Moreover, BiCuSeO shows very low thermal conductivity in the temperature range of 300 (∼0.9 W m−1 K−1) to 923 K (∼0.45 W m−1 K−1). Such low thermal conductivity values are most likely a result of the weak chemical bonds (Young’s modulus, E∼76.5 GPa) and the strong anharmonicity of the bonding arrangement (Gruneisen parameter, γ∼1.5). In addition to increasing the power factor, Ca doping reduces the thermal conductivity of the lattice, as confirmed by both experimental results and Callaway model calculations. The combination of optimized power factor and intrinsically low thermal conductivity results in a high ZT of ∼0.9 at 923 K for Bi0.925Ca0.075CuSeO. Li-Dong Zhao, Jiaqing He and co-workers have gained insight into the highly thermoelectric properties of a bismuth–copper oxyselenide (BiCuSeO), a polycrystalline, layered compound. BiCuSeO's ability to produce a significant electric potential from a temperature difference, and vice versa, arises from its intrinsically low thermal conductivity, and can be further improved by boosting the material's electrical conductivity through doping with strontium or barium, or introducing copper deficiencies. The researchers have now carried out an extensive characterization of the oxyselenide and propose that its conveniently low thermal conductivity results from the weak chemical bonds that exist between two different kinds of layers, and a particular bonding arrangement, in the material's lattice. Moreover, by substituting bismuth ions (Bi3+) with calcium ions (Ca3+) the thermal conductivity of the lattice could be lowered further, leading to an improvement in the oxyselenide's thermoelectric properties. We report on the promising thermoelectric performance of p-type polycrystalline BiCuSeO, which is a layered oxyselenide composed of conductive (Cu2Se2)2− layers that alternate with insulating (Bi2O2)2+ layers. Electrical transport properties can be optimized by substituting Bi3+ with Ca2+. Moreover, BiCuSeO shows very low thermal conductivity in the temperature ranges of 300 (∼0.9 W m−1K−1) to 923 K (∼0.45 W m−1 K−1). These intrinsically low thermal conductivity values may result from the weak chemical bonds of the material as well as the strong anharmonicity of the bonding arrangement. The combination of the optimized power factor and the intrinsically low thermal conductivity results in a high ZT of ∼0.9 at 923 K for Bi0.925Ca0.075CuSeO.

Highlights

  • As thermoelectric materials are capable of creating electricity from waste heat, they are relevant to sustainable energy solutions and receive a significant amount of scientific attention

  • We report on the high thermoelectric performance of p-type polycrystalline BiCuSeO, a layered oxyselenide composed of alternating conductive (Cu2Se2)[2] À and insulating (Bi2O2)[2] þ layers

  • The efficiency of thermoelectric devices is determined by a dimensionless figure of merit (ZT), which is defined as ZT 1⁄4 (S2s/k)T, where S, s, k, and T are the Seebeck coefficient, electrical conductivity, thermal conductivity and absolute temperature, respectively.[1]

Read more

Summary

ORIGINAL ARTICLE

High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO. We report on the high thermoelectric performance of p-type polycrystalline BiCuSeO, a layered oxyselenide composed of alternating conductive (Cu2Se2)[2] À and insulating (Bi2O2)[2] þ layers. After doping with Ca, enhanced electrical conductivity coupled with a moderate Seebeck coefficient leads to a power factor of B4.74 lW cm À1 K À2 at 923 K. BiCuSeO shows very low thermal conductivity in the temperature range of 300 (B0.9 W m À1 K À1) to 923 K (B0.45 W m À1 K À1). In addition to increasing the power factor, Ca doping reduces the thermal conductivity of the lattice, as confirmed by both experimental results and Callaway model calculations. The combination of optimized power factor and intrinsically low thermal conductivity results in a high ZT of B0.9 at 923 K for Bi0.925Ca0.075CuSeO.

INTRODUCTION
RESULTS AND DISCUSSION
NPG Asia Materials
Origin of the low thermal conductivity

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.