Abstract
Achieving glass-like ultra-low thermal conductivity in crystalline solids with high electrical conductivity, a crucial requirement for high-performance thermoelectrics , continues to be a formidable challenge. A careful balance between electrical and thermal transport is essential for optimizing the thermoelectric performance. Despite this inherent trade-off, the experimental realization of an ideal thermoelectric material with a phonon-glass electron-crystal (PGEC) nature has rarely been achieved. Here, PGEC-like AgSbTe2 is demonstrated by tuning the atomic disorder upon Yb doping, which results in an outstanding thermoelectric performance with figure of merit, zT ≈ 2.4 at 573 K. Yb-doping-induced enhanced atomic ordering decreases the overlap between the hole and phonon mean free paths and consequently leads to a PGEC-like transport behavior in AgSbTe2 . A twofold increase in electrical mobility is observed while keeping the position of the Fermi level (EF ) nearly unchanged and corroborates the enhanced crystalline nature of the AgSbTe2 lattice upon Yb doping for electrical transport. The cation-ordered domains, lead to the formation of nanoscale superstructures (≈2 to 4nm) that strongly scatter heat-carrying phonons, resulting in a temperature-independent glass-like thermal conductivity. The strategy paves the way for realizing high thermoelectric performance in various disordered crystals by making them amorphous to phonons while favoring crystal-like electrical transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.