Abstract

We report a detailed description of an innovative route of a melt spinning (MS) technique combined with a subsequent spark plasma sintering process in order to obtain high performance p-type Bi0.52Sb1.48Te3 bulk material, which possesses a unique low-dimensional structure. The unique structure consists of an amorphous structure, 5–15 nm fine nanocrystalline regions, and coherent interfaces between the resulting nanocrystalline regions. Measurements of the thermopower, electrical conductivity, and thermal conductivity have been performed over a range of temperature of 300–400 K. We found that MS technique can give us considerable control over the resulting nanostructure with good thermal stability during the temperature range of 300–400 K and this unique structure can effectively adjust the transport of phonons and electrons, in a manner such that it is beneficial to the overall thermoelectric performance of the material, primarily a reduction in the lattice thermal conductivity. Subsequently, this results in a maximum figure of merit ZT value of 1.56 at 300 K for p-type Bi0.52Sb1.48Te3 bulk material. This ZT value is over a 50% improvement of that of the state of the art commercial Bi2Te3 materials. We also report results of thermal cycling of this material for over one hundred cycles between 300–400 K. Our work offers an innovative route for developing high performance bismuth telluride based alloys and devices, which have even broader prospects for commercial applications. This technique may also be applicable to other thermoelectric materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.