Abstract

A nanocrystalline (NC) face-centered cubic FeNi2CoMo0.2V0.5 high-entropy alloy was produced by high pressure torsion (HPT). The evolutions of microhardness and microstructure of the NC alloy during subsequent isochronal annealing were investigated systematically by electron back-scattering diffraction (EBSD) and high-resolution transmission electron microscopy (HRTEM). It was found that nano-grains and deformation nano-twin lamella were obtained at outer disk edge after HPT process with a hardness plateau of 450 HV. Isochronal annealing below 600 °C induced an evident hardening without precipitation effect, due to the annihilation of mobile dislocations and sustained deformation twin barriers. Evident recrystallization and grain growth of the NC FeNi2CoMo0.2V0.5 high-entropy alloy occurred during isochronal annealing at temperatures higher than 600 °C. The activation energies of recrystallization and grain growth of the NC FeNi2CoMo0.2V0.5 high-entropy alloy were calculated to be 350 kJ/mol and 272 kJ/mol, respectively, corresponding to a slow defects recovery process and a swift GB migration process. The high thermal stability of the NC FeNi2CoMo0.2V0.5 high-entropy was mainly caused by kinetic sluggish diffusion effect and deformation twin boundaries with thermodynamic low boundary energy, which retarded the movements of dislocations and grain boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call