Abstract
The building sector is known to make a large contribution to total energy consumption and CO2 emissions. Phase change materials (PCMs) have been considered for thermal energy storage in buildings. The aim of this study was to improve the thermal conductivity of PCMs applicable as building materials using a radiant floor heating system. Using exfoliated graphite nanoplatelets (xGnP), composite PCMs were prepared by mixing and melting techniques for high dispersibility, thermal conductivity and latent heat storage. xGnP of 3 and 5wt% was added to three types of liquid pure PCMs (octadecane, hexadecane and paraffin) with different melting points. The composite PCMs loaded with xGnP were characterized by using the SEM technique. The thermal properties of the composite PCM loaded with xGnP were determined by thermal conductivity analysis and DSC analysis. SEM morphology showed homogenous and ordered dispersion of xGnP in the three types of PCMs. The thermal conductivity of composite PCMs was increased with the xGnP loaded contents. The DSC results showed that the melting temperature and latent heat of the composite PCMs loaded with xGnP was maintained. The latent heat of composite PCMs slightly decreases when loading with xGnP. As a result, composite PCMs loaded with xGnP can be considered as energy saving building materials for a residential building using a radiant floor heating system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.