Abstract
High voltage direct current (HVDC) cable is attracting more attention during power transmission due to its many advantages. However, the accumulation of space charge, poor breakdown strength and low thermal conductivity of cable insulation layer have been a long-standing obstacle to utilize the HVDC cable applications. Because boron nitride nanosheets (BNNSs) are increasingly demanded in high thermal conductivity insulation materials, herein we report a facile and easy way to prepare styrene-(ethylene-co-butylene)-styrene tri-block copolymer/polypropylene (SEBS/PP) blends filled with BNNSs based on the construction of thermal conductive networks with double-percolation process. The morphology, thermal, and electrical properties of the BNNSs/SEBS/PP nanocomposites were investigated. Scanning electron microscopy showed that the BNNSs were well dispersed in the SEBS phase at low loading of 3 phr. The analysis results on electrical properties illustrated that the direct current (DC) breakdown strength and space charge suppression were remarkably improved by the introduction of BNNSs. In addition, the thermal conductivity of SEBS/PP blends (0.42 W m−1 K−1) was increased to 1.38 W m−1 K−1 when doped with 3 phr BNNSs. This nanocomposites with enhanced thermal conductivity and electrical properties have great potential to be used as recyclable insulating materials for HVDC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.