Abstract

A three-dimensional network-woven architecture made of TiB nanowires has been designed and realized in the matrix of a Ti6Al4V alloy. The architecturally nanostructured design was achieved by dispersing nanoparticles of B4C or B onto the surfaces of spherical Ti6Al4V powder particles via mechanical mixing and subsequent consolidation by spark plasma sintering. The as-sintered nanostructured Ti6Al4V-TiB composites demonstrated excellent tensile strengths and ductility that are required for critical applications. The in situ formed TiB nanowires with aspect ratios up to 300 contributed to the high tensile strengths while the architectural design of the TiB nanowires ensured the good tensile ductility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.