Abstract
Highly active defect sites on the edges of graphene automatically capture oxygen from air to form various oxygen groups. A two-step procedure to remove various oxygen functional groups from the defect sites of exfoliated graphene nanoplatelets (GNPs) has been developed to reduce the atomic oxygen concentration from 9.5% to 4.8%. This two-step approach involves high temperature vacuum annealing followed by hydrogenation to protect the reduced edge carbon atoms from recombining with the atmospheric oxygen. The reduced GNPs exhibit decreased surface resistance and graphitic potential-dependent capacitance characteristics compared to the complex potential-dependent capacitance characteristics exhibited by the unreduced GNPs as a result of the removal of the oxygen functional groups present primarily at the edges. These reduced GNPs also exhibit high electrochemical cyclic stability for electrochemical energy storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.