Abstract

BackgroundIt is anticipated that extreme population events, such as extinctions and outbreaks, will become more frequent as a consequence of climate change. To evaluate the increased probability of such events, it is crucial to understand the mechanisms involved. Variation between individuals in their response to climatic factors is an important consideration, especially if microevolution is expected to change the composition of populations.Methodology/Principal FindingsHere we present data of a willow leaf beetle species, showing high variation among individuals in oviposition rate at a high temperature (20°C). It is particularly noteworthy that not all individuals responded to changes in temperature; individuals laying few eggs at 20°C continued to do so when transferred to 12°C, whereas individuals that laid many eggs at 20°C reduced their oviposition and laid the same number of eggs as the others when transferred to 12°C. When transferred back to 20°C most individuals reverted to their original oviposition rate. Thus, high variation among individuals was only observed at the higher temperature. Using a simple population model and based on regional climate change scenarios we show that the probability of outbreaks increases if there is a realistic increase in the number of warm summers. The probability of outbreaks also increased with increasing heritability of the ability to respond to increased temperature.Conclusions/SignificanceIf climate becomes warmer and there is latent variation among individuals in their temperature response, the probability for outbreaks may increase. However, the likelihood for microevolution to play a role may be low. This conclusion is based on the fact that it has been difficult to show that microevolution affect the probability for extinctions. Our results highlight the urge for cautiousness when predicting the future concerning probabilities for extreme population events.

Highlights

  • Temperature is important for the distribution and abundance of biological organisms [1]

  • The females experiencing low temperature in period II (20–12–20uC) reduced the number of eggs laid per day in this period compared to the number of eggs laid in period I and into a third experimental period (III) (Fig. 1 lower; mean(6SE) = 13.0(64.2) – 8.2(61.9) – 13.4(64.7))

  • It should be noted that not all females experiencing 12uC in period II reduced the number of eggs laid per day, rather it was mainly females laying many eggs per day that did so, whereas most females with low oviposition rate in period I continued to lay few eggs per day in period II (Fig. 1)

Read more

Summary

Introduction

Temperature is important for the distribution and abundance of biological organisms [1]. The reproductive rate of an aphid feeding on pine is both affected directly by temperature and indirectly through changes in host plant quality [18]. This aphid show higher variability in reproductive rate at high than low temperatures [18], possibly indicating a difference among individuals in their response. Such observations may be an example of phenotypic and/or genotypic variability in temperature response among individuals in a population [13], [19], [20]. Variation between individuals in their response to climatic factors is an important consideration, especially if microevolution is expected to change the composition of populations

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.