Abstract

Wear-driven tool failure is one of the main hurdles in the industry. This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites. However, the maximum ceramic content is limited by cracking. In this work, the tribological behaviour of the functionally graded WC-ceramic-particle-reinforced Stellite 6 coatings is studied. To that end, the wear resistance at room temperature and 400 °C is investigated. Moreover, the tribological analysis is supported by crack sensitivity and hardness evaluation, which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement. Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content, hence improving the tribological behaviour, most notably at high temperatures. Additionally, a shift from abrasive to oxidative wear is observed in high-temperature wear testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.