Abstract

Abstract Due to ongoing climate change, short-term extreme heat waves in the summer are expected to be more frequent. Insect eggs are sensitive to thermal stress. This raises the question of whether herbivore insects' thermal adaptability would be changed after a single extreme heat wave at the egg stage. In this study, we examined the developmental performance of Ostrinia furnacalis Guenee at 25 °C, 27 °C, 29 °C or 31 °C after a single extreme heat wave (42 °C) for 0 h (control), 1 h, 2 h, or 3 h at the egg stage. The results showed that O. furnacalis at the egg or larval stage was more sensitive to a single heat wave than it was at the pupae or adult stage. After a single heat wave, O. furnacalis showed a reduced egg-hatching rate or reduced larval survival rate, but the optimum temperature for egg hatching and larval survival was higher than that in the control. The upper temperature threshold and optimum temperature for larval development in the control were higher than that after a single extreme heat wave. Both male and female pupal weight decreased with increasing temperature, and pupal weight decreased faster in females than in males. The Cox proportional hazard model showed that when O. furnacalis developed at 25 °C, the instantaneous death risk of adults with a 3 h heat wave at the egg stage was higher than that of the control, but when O. furnacalis developed at 29 °C and 31 °C, the instantaneous death risk of adults after a heat wave was significantly lower than that of the control. Our study highlights the effect of a single heat wave on O. furnacalis eggs and the subsequent development of survival individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.